User Register / Login

As Temperatures Rise, Earth’s Soil is ‘Breathing’ More Heavily

August 15, 2018 |

This article was originally published on Phys.org


“The vast reservoir of carbon stored beneath our feet is entering Earth’s atmosphere at an increasing rate, most likely as a result of warming temperatures, suggest observations collected from a variety of the Earth’s many ecosystems.

Blame  and how they react to warmer temperatures. Their food of choice—nature’s detritus like dead leaves and fallen trees—contains carbon. When bacteria chew on decaying leaves and fungi chow down on dead plants, they convert that storehouse of carbon into carbon dioxide that enters the atmosphere.

In a study published August 2 in Nature, scientists show that this process is speeding up as Earth warms and is happening faster than plants are taking in carbon through photosynthesis. The team found that the rate at which microbes are transferring carbon from soil to the atmosphere has increased 1.2 percent over a 25-year time period, from 1990 through 2014.

While that may not seem like a big change, such an increase on a global scale, in a relatively short period of time in Earth history, is massive. The finding, based on thousands of observations made by scientists at hundreds of sites around the globe, is consistent with the predictions that scientists have made about how Earth might respond to warmer temperatures.

“It’s important to note that this is a finding based on observations in the real world. This is not a tightly controlled lab experiment,” said first author Ben Bond-Lamberty of the Joint Global Change Research Institute, a partnership between the Department of Energy’s Pacific Northwest National Laboratory and the University of Maryland.

“Soils around the globe are responding to a warming climate, which in turn can convert more carbon into carbon dioxide which enters the atmosphere. Depending on how other components of the carbon cycle might respond due to climate warming, these soil changes can potentially contribute to even higher temperatures due to a feedback loop,” he added…”

Read on a: Phys.org

Benefit from the Coalition’s unique overview of the capitals approach and community, gain insights into the latest thinking and developments and receive newsletters and project updates.